Current approaches to mitigate the effect of microgravity on astronauts’ nutrition, physical activity and sleep: a narrative review

Authors

  • Lígia Rebelo Gomes
  • Inês Magalhães
  • Maria-Raquel G Silva

DOI:

https://doi.org/10.62741/ahrj.v3iSuppl.97

Keywords:

astronauts, microgravity, food habits, physical activity, sleep

Abstract

Introduction: The microgravity exerts enormous changes andimpact on human physiology, specifically on astronauts, such as their food habits, physical activity and awake-sleep cycle. Prolonged exposure to microgravity environments induces a series of adaptations and physiological changes that directly affect body composition, nutrient absorption, and sleep homeostasis. While essential for survival during spacial missions, these changes present significant challenges to the health and well-being of crew members, speciallay in long term missions.

Objectives: To analyze the main effects of microgravity on astronauts regarding their food habits, physical activity, and sleep, and review the contemporary strategies to address them

Methodology: To conduct this narrative review, scientific articles were searched in PubMed and ScieloPortugal, using the following keywords: “astronaut”, “microgravity”,“food intake”, “nutrition”, "physical activity”, “sleep”, combined with the Boolean operators AND or OR. Fifty three scientific publications were selected and analysed.

Results: Literature studies showed that during, long-duration space flights, astronauts typically consume less energy than needed and present low energy availability, which can negatively affect their health with consequences upon body composition, including muscle and bone mass losses. In addition, sleep is also disrupted leading to physical and mental fatigue.

Conclusion: Improved nutritional strategies and sleep hygiene are needed to ensure maintainance of an adequate energy availability during prolonged space missions.

References

de Araújo GCC. Uma geopolítica da exploração espacial?: Apontamentos sobre o "tratado sobre princípios reguladores das atividades dos estados na exploração e uso do espaço cósmico, inclusive a lua e demais corpos celestes", de 1967. Rev Científica FHO|Uniararas. 2023;2:1-13. doi:10.55660/revfho.v2i2.88 DOI: https://doi.org/10.55660/revfho.v2i2.88

LeiteVB, Andrade-Neto AV. Conceitos de espaço, tempo e movimento na Mecânica Clássica e na Teoria da Relativida-de. Rev Bras Ensino Fís. 2023;45:e20220321.doi: 10.1590/1806-9126-RBEF-2022-0321 DOI: https://doi.org/10.1590/1806-9126-rbef-2022-0321

Jules K, McPherson K, Hrovat K, Kelly E. Initial characteri-zation of the microgravity environment of the international space station: increments 2 through 4. Acta Astronaut. 2004;55(10):855-887. doi:10.1016/j.actaastro.2004.04.008 DOI: https://doi.org/10.1016/j.actaastro.2004.04.008

Mircea AA, Pistritu DV, Fortner A, Tanca A, Liehn EA, Bucur O. Space Travel: The Radiation and Microgravity Effects on the Cardiovascular System.Int J Mol Sci. 2024;25(21):11812. doi:10.3390/ijms252111812 DOI: https://doi.org/10.3390/ijms252111812

Clément GR, Boyle RD, George KA, et al. Challenges to the central nervous system during human spaceflight missions to Mars.J Neurophysiol. 2020;123(5):2037-2063. doi:10.1152/jn.00476.2019 DOI: https://doi.org/10.1152/jn.00476.2019

Costa F, Ambesi-Impiombato FS, Beccari T, et al. Spaceflight Induced Disorders: Potential Nutritional Countermeas-ures.Front Bioeng Biotechnol. 2021;9:666683. doi:10.3389/fbioe.2021.666683 DOI: https://doi.org/10.3389/fbioe.2021.666683

White RJ, Averner M. Humans in space.Nature. 2001;409(6823):1115-1118. doi:10.1038/35059243 DOI: https://doi.org/10.1038/35059243

Orwoll ES, Adler RA, Amin S, et al. Skeletal health in long-duration astronauts: nature, assessment, and management recommendations from the NASA Bone Summit.J Bone Miner Res. 2013;28(6):1243-1255. doi:10.1002/jbmr.1948 DOI: https://doi.org/10.1002/jbmr.1948

Corydon TJ, Damholt MB, Berggreen C, et al. Reduced ex-pression of apoptosis-related genes in human T cells inre-sponse to simulated microgravity. Acta Astronaut. 2016;126:436-422. doi:10.1016/j.actaastro.2016.05.002 DOI: https://doi.org/10.1016/j.actaastro.2016.05.002

Demertzi A, Van Ombergen A, Tomilovskaya E, et al. Cortical reorganization in an astronaut's brain after long-duration spaceflight.Brain Struct Funct. 2016;221(5):2873-2876. doi:10.1007/s00429-015-1054-3 DOI: https://doi.org/10.1007/s00429-015-1054-3

Vico L, Hargens A. Skeletal changes during and after space-flight.Nat Rev Rheumatol. 2018;14(4):229-245. doi:10.1038/nrrheum.2018.37 DOI: https://doi.org/10.1038/nrrheum.2018.37

NASA. Nutritional Requirements for Exploration Missions up to 365 days. 2020.https://ntrs.nasa.gov/api/citations/20205008306/downloads/JSC67378%20Expl%20Nutr%20Reqs%20042020.pdf

Caruso J, Patel N, Wellwood J, Bollinger L. Impact of Exer-cise-Induced Strains and Nutrition on Bone Mineral Density in Spaceflight and on the Ground.Aerosp Med Hum Perform. 2023;94(12):923-933. doi:10.3357/AMHP.6255.2023 DOI: https://doi.org/10.3357/AMHP.6255.2023

Zwart SR, Rice BL, Dlouhy H, et al. Dietary acid load and bone turnover during long-duration spaceflight and bed rest.Am J Clin Nutr. 2018;107(5):834-844. doi:10.1093/ajcn/nqy029 DOI: https://doi.org/10.1093/ajcn/nqy029

Tian Y, Ma X, Yang C, Su P, Yin C, Qian AR. The Impact of Oxidative Stress on the Bone System in Response to the Space Special Environment.Int J Mol Sci. 2017;18(10):2132. doi:10.3390/ijms18102132 DOI: https://doi.org/10.3390/ijms18102132

Rai B, Kaur J, Catalina M, Anand SC, Jacobs R, Teughels W. Effect of simulated microgravity on salivary and serum oxi-dants, antioxidants, and periodontal status.J Periodontol. 2011;82(10):1478-1482. doi:10.1902/jop.2011.100711 DOI: https://doi.org/10.1902/jop.2011.100711

Ong J, Tarver W, Brunstetter T, et al. Spaceflight associated neuro-ocular syndrome: proposed pathogenesis, terrestrial analogues, and emerging countermeasures.Br J Ophthalmol. 2023;107(7):895-900. doi:10.1136/bjo-2022-322892 DOI: https://doi.org/10.1136/bjo-2022-322892

Morikawa D, Nojiri H, Saita Y, et al. Cytoplasmic reactive oxygen species and SOD1 regulate bone mass during me-chanical unloading.J Bone Miner Res. 2013;28(11):2368-2380. doi:10.1002/jbmr.1981 DOI: https://doi.org/10.1002/jbmr.1981

Xin M, Yang Y, Zhang D, Wang J, Chen S, Zhou D. Attenua-tion of hind-limb suspension-induced bone loss by curcumin is associated with reduced oxidative stress and increased vit-amin D receptor expression.Osteoporos Int. 2015;26(11):2665-2676. doi:10.1007/s00198-015-3153-7 DOI: https://doi.org/10.1007/s00198-015-3153-7

Lawler JM, Kunst M, Hord JM, et al. EUK-134 ameliorates nNOSμ translocation and skeletal muscle fiber atrophy dur-ing short-term mechanical unloading.Am J Physiol Regul In-tegr Comp Physiol. 2014;306(7):R470-R482. doi:10.1152/ajpregu.00371.2013 DOI: https://doi.org/10.1152/ajpregu.00371.2013

Meacci E, Chirco A, Garcia-Gil M. Potential Vitamin E Sig-naling Mediators in Skeletal Muscle.Antioxidants (Basel). 2024;13(11):1383. doi:10.3390/antiox13111383 DOI: https://doi.org/10.3390/antiox13111383

Cooper M, Douglas G, Perchonok M. Developing the NASA food system for long-duration missions.J Food Sci. 2011;76(2):R40-R48. doi:10.1111/j.1750-3841.2010.01982.x DOI: https://doi.org/10.1111/j.1750-3841.2010.01982.x

Zwart SR, Kloeris VL, Perchonok MH, Braby L, Smith SM. Assessment of nutrient stability in foods from the space food system after long-duration spaceflight on the ISS.J Food Sci. 2009;74(7):H209-H217. doi:10.1111/j.1750-3841.2009.01265.x DOI: https://doi.org/10.1111/j.1750-3841.2009.01265.x

Smith SM, McCoy T, Gazda D, Morgan JL, Heer M, Zwart SR. Space flight calcium: implications for astronaut health, spacecraft operations, and Earth.Nutrients. 2012;4(12):2047-2068. doi:10.3390/nu4122047 DOI: https://doi.org/10.3390/nu4122047

Baran R, Wehland M, Schulz H, Heer M, Infanger M, Grimm D. Microgravity-Related Changes in Bone Density and Treatment Options: A Systematic Review.Int J Mol Sci. 2022;23(15):8650. doi:10.3390/ijms23158650 DOI: https://doi.org/10.3390/ijms23158650

World Health Organization & Food and Agriculture Organi-zation of the United Nations. Vitamin and mineral require-ments in human nutrition: Report of a joint FAO/WHO ex-pert consultation, 2nd edition. 2004.https://www.who.int/publications/i/item/9241546123

Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station.J Nutr. 2005;135(3):437-443. doi:10.1093/jn/135.3.437 DOI: https://doi.org/10.1093/jn/135.3.437

Smith SM, Heer MA, Shackelford LC, Sibonga JD, Ploutz-Snyder L, Zwart SR. Benefits for bone from resistance exer-cise and nutrition in long-duration spaceflight: Evidence from biochemistry and densitometry.J Bone Miner Res. 2012;27(9):1896-1906. doi:10.1002/jbmr.1647 DOI: https://doi.org/10.1002/jbmr.1647

Buckey JC, Phillips SD, Anderson AP, et al. Microgravity-induced ocular changes are related to body weight.Am J PhysiolRegulIntegr Comp Physiol. 2018;315(3):R496-R499. doi:10.1152/ajpregu.00086.2018 DOI: https://doi.org/10.1152/ajpregu.00086.2018

Yang J, Zhang G, Dong D, Shang P. Effects of Iron Overload and Oxidative Damage on the Musculoskeletal System in the Space Environment: Data from Spaceflights and Ground-Based Simulation Models.Int J Mol Sci. 2018;19(9):2608. doi:10.3390/ijms19092608 DOI: https://doi.org/10.3390/ijms19092608

Horeau M, Ropert M, Mulder E, et al. Iron metabolism regu-lation in females and males exposed to simulated microgravi-ty: results from the randomized trial Artificial Gravity Bed Rest-European Space Agency (AGBRESA).Am J Clin Nutr. 2022;116(5):1430-1440. doi:10.1093/ajcn/nqac205 DOI: https://doi.org/10.1093/ajcn/nqac205

Trudel G, Shahin N, Ramsay T, Laneuville O, Louati H. He-molysis contributes to anemia during long-duration space flight.Nat Med. 2022;28(1):59-62. doi:10.1038/s41591-021-01637-7 DOI: https://doi.org/10.1038/s41591-021-01637-7

Horeau M, Navasiolava N, Van Ombergen A, et al. Dry im-mersion rapidly disturbs iron metabolism in men and wom-en: results from the VIVALDI studies.NPJ Microgravity. 2024;10(1):68. doi:10.1038/s41526-024-00399-z DOI: https://doi.org/10.1038/s41526-024-00399-z

Zwart SR, Gibson CR, Mader TH, et al. Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism.J Nutr. 2012;142(3):427-431. doi:10.3945/jn.111.154245 DOI: https://doi.org/10.3945/jn.111.154245

Zwart SR, Gregory JF, Zeisel SH, et al. Genotype, B-vitamin status, and androgens affect spaceflight-induced ophthalmic changes.FASEB J. 2016;30(1):141-148. doi:10.1096/fj.15-278457 DOI: https://doi.org/10.1096/fj.15-278457

Smith SM, Zwart SR. Spaceflight-related ocular changes: the potential role of genetics, and the potential of B vitamins as a countermeasure.Curr Opin Clin NutrMetab Care. 2018;21(6):481-488. doi:10.1097/MCO.0000000000000510 DOI: https://doi.org/10.1097/MCO.0000000000000510

Dakkumadugula A, Pankaj L, Alqahtani AS, Ullah R, Ercisli S, Murugan R. Space nutrition and the biochemical changes caused in Astronauts Health due to space flight: A re-view.Food Chem X. 2023;20:100875. doi:10.1016/j.fochx.2023.100875 DOI: https://doi.org/10.1016/j.fochx.2023.100875

NASA. Food Safety Program for Space Has Taken Over on Earth. 2024. https://www.nasa.gov/directorates/stmd/tech-transfer/spinoffs/food-safety-program-for-space-has-taken-over-on-earth/

NASA. Technical Reports Server. A Zero-Gravity Cup for Drinking Beverages in Microgravity. 2013. https://ntrs.nasa.gov/citations/20120006525

Gizmodo. This Is How Astronauts Can Now Drink Liquids in Space. 2015. https://gizmodo.com/this-is-how-astronauts-can-now-drink-liquids-in-space-1745651011

Douglas GL, Zwart SR, Smith SM. Space Food for Thought: Challenges and Considerations for Food and Nutrition on Exploration Missions.J Nutr. 2020;150(9):2242-2244. doi:10.1093/jn/nxaa188 DOI: https://doi.org/10.1093/jn/nxaa188

NASA. A Lab Aloft (International Space Station Research). 2015. https://blogs.nasa.gov/ISS_Science_Blog/2015/05/01/space-station-espresso-cups-strong-coffee-yields-stronger-science/

Gaskill ML. NASA Achieves Water Recovery Milestone on International Space Sta-tion.https://www.nasa.gov/missions/station/iss-research/nasa-achieves-water-recovery-milestone-on-international-space-station/

Lane HW, Feeback DL. Water and energy dietary require-ments and endocrinology of human space flight.Nutrition. 2002;18(10):820-828. doi:10.1016/s0899-9007(02)00936-x DOI: https://doi.org/10.1016/S0899-9007(02)00936-X

Cena H, Sculati M, Roggi C. Nutritional concerns and possi-ble countermeasures to nutritional issues related to space flight.Eur J Nutr. 2003;42(2):99-110. doi:10.1007/s00394-003-0392-8 DOI: https://doi.org/10.1007/s00394-003-0392-8

Gonzalez Viejo C, Harris N, Fuentes S. Assessment of chang-es in sensory perception, biometrics and emotional response for spaceexploration by simulating microgravity posi-tions.Food ResInt. 2024;175:113827. doi:10.1016/j.foodres.2023.113827 DOI: https://doi.org/10.1016/j.foodres.2023.113827

Santos LEN, SilvaDF, SilvaRF, SilvaAG. Alterações muscu-loesqueléticas em ambiente de microgravidade. RevUNIFA. 2020;10(1), 89–97. doi: 10.22480/revunifa.2020.33.281 DOI: https://doi.org/10.22480/revunifa.2020.33.281

Robin A, Van Ombergen A, Laurens C, et al. Comprehensive assessment of physiological responses in women during the ESA dry immersion VIVALDI microgravity simulation.Nat Commun. 2023;14(1):6311. doi:10.1038/s41467-023-41990-4 DOI: https://doi.org/10.1038/s41467-023-41990-4

Bonmatí-Carrión MÁ, Santhi N, Atzori G, et al. Effect of 60 days of head down tilt bed rest on amplitude and phase of rhythms in physiology and sleep in men.NPJ Microgravity. 2024;10(1):42. doi:10.1038/s41526-024-00387-3 DOI: https://doi.org/10.1038/s41526-024-00387-3

Zong H, Fei Y, Liu N. Circadian Disruption and Sleep Disor-ders in Astronauts: A Review of Multi-Disciplinary Interven-tions for Long-Duration Space Missions.Int J Mol Sci. 2025;26(11):5179. doi:10.3390/ijms26115179 DOI: https://doi.org/10.3390/ijms26115179

Zhang C, Chen Y, Fan Z, Xin B, Wu B, Lv K. Sleep-Monitoring Technology Progress and Its Application in Space.Aerosp Med Hum Perform. 2024;95(1):37-44.doi:10.3357/AMHP.6249.2023 DOI: https://doi.org/10.3357/AMHP.6249.2023

Flynn-Evans EE, Braun AM, Jansen RA. Sleep Away from Earth.Sleep Med Clin. 2025;20(1):73-80. doi:10.1016/j.jsmc.2024.10.003 DOI: https://doi.org/10.1016/j.jsmc.2024.10.003

Mallis MM, DeRoshia CW. Circadian rhythms, sleep, and performance in space.Aviat Space Environ Med. 2005;76(6 Suppl):B94-B107.

Downloads

Published

10-02-2026