Lab-on-a chip: nanobiosensors for point-of-care diagnostics
DOI:
https://doi.org/10.62741/ahrj.v2i4.55Keywords:
Diagnosis, nanobiosensors, pathogen, Point-of-careAbstract
Introduction: Growing demand for fast, sensitive and simple diagnostic tools are driving the innovation of nanobiosensors, for point-of-care application. By combining state-of-the-art biosensing technologies and micro-scale platforms, they facilitate rapid in situ analyses of disease biomarkers for infectious diseases, cancer, and a wide range of diseases. There are several new modified nanomaterial-based biosensors (including modified graphene, carbon nanotubes, quantum dots and noble metals nanoparticles) that could offer desired sensitivity and specificity, combined with microfluidic and wireless systems.
Objectives: The present paper aims to review the technical aspects of the new generation of biosensors and its potential uses in point-of-care evidence-based diagnostics.
Methodology: A literature search was conducted across PubMed, ScienceDirect, and MDPI, focusing on peer-reviewed articles from 2010 to 2024, with priority given to studies from 2019–2024. A total of 63 articles were identified; 47 were included in this review, and 16 were excluded based on relevance.
Results: We provide examples of the clinical relevance of these tools from pathogen detection as well as oncology. The use of nanobiosensing for decentralized/point-of-care/personalized health care has great potential even in the context of remaining challenges including standardization practices and biofouling related problems, especially when multidisciplinary innovations are united.
Conclusion: In conclusion, while challenges continue to remain such as standardization and biofouling, the future of nanobiosensors as a key component in decentralized and personalized healthcare remains bright when supported by innovations stemming from interdisciplinary collaboration.
References
Noah NM, Ndangili PM. Current Trends of Nanobiosensors for Point-of-Care Diagnostics. J Anal Methods Chem. 2019;2019:1-16. doi:10.1155/2019/2179718 DOI: https://doi.org/10.1155/2019/2179718
Rocchitta G, Spanu A, Babudieri S, et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors (Basel). 2016;16(6):780. doi:10.3390/s16060780 DOI: https://doi.org/10.3390/s16060780
Yao X, Zhang Y, Jin W, Hu Y, Cui Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors (Basel). 2021;21(3):995. doi:10.3390/s21030995 DOI: https://doi.org/10.3390/s21030995
Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. Biosensors. 2021;11(6):190. doi:10.3390/bios11060190 DOI: https://doi.org/10.3390/bios11060190
Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Corde-ro-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Bio-sensors for the Detection of Bacterial and Viral Clinical Pathogens. Sensors (Basel). 2020;20(23):6926. doi:10.3390/s20236926 DOI: https://doi.org/10.3390/s20236926
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Bio-sensors for Detection of Pathogenic Food Bacteria: A Re-view. Biosensors. 2020;10(6):58. doi:10.3390/bios10060058 DOI: https://doi.org/10.3390/bios10060058
Chamorro-Garcia A, Merkoçi A. Nanobiosensors in diagnostics. Nanobiomedicine. 2016;3:1849543516663574. doi:10.1177/1849543516663574 DOI: https://doi.org/10.1177/1849543516663574
Naresh Varnakavi, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosen-sors. Sensors (Basel). 2021;21(4):1109. doi:10.3390/s21041109 DOI: https://doi.org/10.3390/s21041109
Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules. 2021;26(3):748. doi:10.3390/molecules26030748 DOI: https://doi.org/10.3390/molecules26030748
Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem. 2021;882:114989. doi:10.1016/j.jelechem.2021.114989 DOI: https://doi.org/10.1016/j.jelechem.2021.114989
Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advance-ments in Nanobiosensors: Current Trends, Challenges, Ap-plications, and Future Scope. Biosensors. 2022;12(10):892. doi:10.3390/bios12100892 DOI: https://doi.org/10.3390/bios12100892
Fan YF, Guo ZB, Ge GB. Enzyme-Based Biosensors and Their Applications. Biosensors. 2023;13(4):476. doi:10.3390/bios13040476 DOI: https://doi.org/10.3390/bios13040476
Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci. 2023;24(9):7989. doi:10.3390/ijms24097989 DOI: https://doi.org/10.3390/ijms24097989
Vallejos-Vidal E, Reyes-Cerpa S, Rivas-Pardo JA, et al. Single-Nucleotide Polymorphisms (SNP) Mining and Their Effect on the Tridimensional Protein Structure Prediction in a Set of Immunity-Related Expressed Sequence Tags (EST) in Atlantic Salmon (Salmo salar). Front Genet. 2020;10. doi:10.3389/fgene.2019.01406 DOI: https://doi.org/10.3389/fgene.2019.01406
Kavita V. DNA Biosensors-A Review. J Bioengineer & Biomed-ical Sci. 2017;07(02). doi:10.4172/2155-9538.1000222. DOI: https://doi.org/10.4172/2155-9538.1000222
Carvajal Barbosa L, Insuasty Cepeda D, León Torres AF, Arias Cortes MM, Rivera Monroy ZJ, Garcia Castaneda JE. Nucle-ic acid-based biosensors: analytical devices for prevention, diagnosis and treatment of diseases. Vitae. 2021;28(3). doi:10.17533/udea.vitae.v28n3a347259. DOI: https://doi.org/10.17533/udea.vitae.v28n3a347259
Nanomaterials in Biosensors. In: Nanomaterials for Biosen-sors. Elsevier; 2018:1-74. doi:10.1016/b978-0-323-44923-6.00001-7 DOI: https://doi.org/10.1016/B978-0-323-44923-6.00001-7
Fu Z, Lu YC, Lai JJ. Recent Advances in Biosensors for Nucle-ic Acid and Exosome Detection. Chonnam Med J. 2019;55(2):86. doi:10.4068/cmj.2019.55.2.86 DOI: https://doi.org/10.4068/cmj.2019.55.2.86
Kim J, Noh S, Park JA, et al. Recent Advances in Aptasensor for Cytokine Detection: A Review. Sensors (Basel). 2021;21(24):8491. doi:10.3390/s21248491 DOI: https://doi.org/10.3390/s21248491
Chen Z, Hu L, Zhang BT, et al. Artificial Intelligence in Ap-tamer–Target Binding Prediction. Int J Mol Sci. 2021;22(7):3605. doi:10.3390/ijms22073605 DOI: https://doi.org/10.3390/ijms22073605
Sequeira-Antunes B, Ferreira HA. Nucleic Acid Aptamer-Based Biosensors: A Review. Biomedicines. 2023;11(12):3201. doi:10.3390/biomedicines11123201 DOI: https://doi.org/10.3390/biomedicines11123201
Xue Z, Gai Y, Wu Y, Liu Z, Li Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun Mater. 2024;5(1):211. doi:10.1038/s43246-024-00658-2 DOI: https://doi.org/10.1038/s43246-024-00658-2
Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024;16(3):e1961. doi:10.1002/wnan.1961 DOI: https://doi.org/10.1002/wnan.1961
Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol. 2011;6(4):203-215. doi:10.1038/nnano.2011.44 DOI: https://doi.org/10.1038/nnano.2011.44
Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Mul-tiplexed Nanobiosensors: Current Trends in Early Diagnos-tics. Sensors (Basel). 2020;20(23):6890. doi:10.3390/s20236890 DOI: https://doi.org/10.3390/s20236890
Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt Chem. 2017;97:445-457. doi:10.1016/j.trac.2017.10.005 DOI: https://doi.org/10.1016/j.trac.2017.10.005
Song M, Yang M, Hao J. Pathogenic Virus Detection by Opti-cal Nanobiosensors. Cell Rep Phys Sci. 2021;2(1):100288. doi:10.1016/j.xcrp.2020.100288 DOI: https://doi.org/10.1016/j.xcrp.2020.100288
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotech-nology-Enabled Biosensors: A Review of Fundamentals, De-sign Principles, Materials, and Applications. Biosensors (Ba-sel). 2022;13(1):40. doi:10.3390/bios13010040 DOI: https://doi.org/10.3390/bios13010040
Pourmadadi M, Yazdian F, Hojjati S, Khosravi-Darani K. De-tection of Microorganisms Using Graphene-Based Nanobi-osensors. Food Technol Biotechnol. 2021;59(4):496-506. doi:10.17113/ftb.59.04.21.7223 DOI: https://doi.org/10.17113/ftb.59.04.21.7223
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applica-tions and toxicities. Arab J Chem. 2019;12(7):908-931. doi:10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011
Altammar KA. A review on nanoparticles: characteristics, syn-thesis, applications, and challenges. Front Microbiol. 2023;14:1155622. doi:10.3389/fmicb.2023.1155622 DOI: https://doi.org/10.3389/fmicb.2023.1155622
Huang Y, Li P, Zhao R, et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother. 2022;151:113053. doi:10.1016/j.biopha.2022.113053 DOI: https://doi.org/10.1016/j.biopha.2022.113053
Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strate-gies to overcome biological barriers. Adv Drug Deliv Rev. 2023;203:115115. doi:10.1016/j.addr.2023.115115 DOI: https://doi.org/10.1016/j.addr.2023.115115
Janissen R, Sahoo PK, Santos CA, et al. InP Nanowire Biosen-sor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett. 2017;17(10):5938-5949. doi:10.1021/acs.nanolett.7b01803 DOI: https://doi.org/10.1021/acs.nanolett.7b01803
Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. Nanotechnology. 2023;34(49):492002. doi:10.1088/1361-6528/acf3f0 DOI: https://doi.org/10.1088/1361-6528/acf3f0
Syedmoradi L, Ahmadi A, Norton ML, Omidfar K. A review on nanomaterial-based field effect transistor technology for bi-omarker detection. Microchim Acta. 2019;186(11):739. doi:10.1007/s00604-019-3850-6 DOI: https://doi.org/10.1007/s00604-019-3850-6
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosen-sors for healthcare monitoring. J Nanobiotechnol. 2023;21(1):411. doi:10.1186/s12951-023-02153-1 DOI: https://doi.org/10.1186/s12951-023-02153-1
Chen HC, Chen YT, Tsai RY, et al. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron. 2015;66:198-207. doi:10.1016/j.bios.2014.11.019 DOI: https://doi.org/10.1016/j.bios.2014.11.019
Li D, Chen H, Fan K, et al. A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Bio-sens Bioelectron. 2021;181:113147. doi:10.1016/j.bios.2021.113147 DOI: https://doi.org/10.1016/j.bios.2021.113147
Wei S, Dou Y, Yu Y, et al. A novel biosensor based on a bio-barcode for detecting Mycobacterium tuberculosis. Anal Methods. 2023;15(30):3683-3691. doi:10.1039/D3AY00772C DOI: https://doi.org/10.1039/D3AY00772C
Ma J, Du M, Wang C, et al. Rapid and Sensitive Detection of Mycobacterium tuberculosis by an Enhanced Nanobiosen-sor. ACS Sens. 2021;6(9):3367-3376. doi:10.1021/acssensors.1c01227 DOI: https://doi.org/10.1021/acssensors.1c01227
Krivitsky V, Zverzhinetsky M, Patolsky F. Antigen-Dissociation from Antibody-Modified Nanotransistor Sensor Arrays as a Direct Biomarker Detection Method in Unprocessed Bi-osamples. Nano Lett. 2016;16(10):6272-6281. doi:10.1021/acs.nanolett.6b02584 DOI: https://doi.org/10.1021/acs.nanolett.6b02584
Kim J, Jeong S, Sarawut S, et al. An immunosensor based on a high performance dual-gate oxide semiconductor thin-film transistor for rapid detection of SARS-CoV-2. Lab Chip. 2022;22(5):899-907. doi:10.1039/D1LC01116B DOI: https://doi.org/10.1039/D1LC01116B
Park S, Kim H, Woo K, et al. SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Lett. 2022;22(1):50-57. doi:10.1021/acs.nanolett.1c03108 DOI: https://doi.org/10.1021/acs.nanolett.1c03108
Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Bio-sensor. ACS Nano. 2020;14(4):5135-5142. doi:10.1021/acsnano.0c02823 DOI: https://doi.org/10.1021/acsnano.0c02823
Huang YW, Wu CS, Chuang CK, et al. Real-Time and Label-Free Detection of the Prostate-Specific Antigen in Human Serum by a Polycrystalline Silicon Nanowire Field-Effect Transistor Biosensor. Anal Chem. 2013;85(16):7912-7918. doi:10.1021/ac401610s DOI: https://doi.org/10.1021/ac401610s
Institute of Physics, P.O: Sainik School, Bhubaneswar, India, Sn S. Nanomaterials for Monitoring Glucose in Diabetes. Austin J Biosens & Bioelectron. 2023;8(1). doi:10.26420/austinjbiosensbioelectron.2023.1045 DOI: https://doi.org/10.26420/austinjbiosensbioelectron.2023.1045
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Athena Health & Research Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright of published papers is assigned to the Journal, but all content is licensed under the terms of Creative Commons Non-comercial 4.0 International License. Thus users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This is in accordance with the BOAI definition of open access.







