Lab-on-a chip: nanobiosensors for point-of-care diagnostics

Authors

DOI:

https://doi.org/10.62741/ahrj.v2i4.55

Keywords:

Diagnosis, nanobiosensors, pathogen, Point-of-care

Abstract

 

Introduction: Growing demand for fast, sensitive and simple diagnostic tools are driving the innovation of nanobiosensors, for point-of-care application. By combining state-of-the-art biosensing technologies and micro-scale platforms, they facilitate rapid in situ analyses of disease biomarkers for infectious diseases, cancer, and a wide range of diseases. There are several new modified nanomaterial-based biosensors (including modified graphene, carbon nanotubes, quantum dots and noble metals nanoparticles) that could offer desired sensitivity and specificity, combined with microfluidic and wireless systems.

Objectives: The present paper aims to review the technical aspects of the new generation of biosensors and its potential uses in point-of-care evidence-based diagnostics.

Methodology: A literature search was conducted across PubMed, ScienceDirect, and MDPI, focusing on peer-reviewed articles from 2010 to 2024, with priority given to studies from 2019–2024. A total of 63 articles were identified; 47 were included in this review, and 16 were excluded based on relevance.

Results: We provide examples of the clinical relevance of these tools from pathogen detection as well as oncology. The use of nanobiosensing for decentralized/point-of-care/personalized health care has great potential even in the context of remaining challenges including standardization practices and biofouling related problems, especially when multidisciplinary innovations are united.

Conclusion: In conclusion, while challenges continue to remain such as standardization and biofouling, the future of nanobiosensors as a key component in decentralized and personalized healthcare remains bright when supported by innovations stemming from interdisciplinary collaboration.

References

Noah NM, Ndangili PM. Current Trends of Nanobiosensors for Point-of-Care Diagnostics. J Anal Methods Chem. 2019;2019:1-16. doi:10.1155/2019/2179718 DOI: https://doi.org/10.1155/2019/2179718

Rocchitta G, Spanu A, Babudieri S, et al. Enzyme Biosensors for Biomedical Applications: Strategies for Safeguarding Analytical Performances in Biological Fluids. Sensors (Basel). 2016;16(6):780. doi:10.3390/s16060780 DOI: https://doi.org/10.3390/s16060780

Yao X, Zhang Y, Jin W, Hu Y, Cui Y. Carbon Nanotube Field-Effect Transistor-Based Chemical and Biological Sensors. Sensors (Basel). 2021;21(3):995. doi:10.3390/s21030995 DOI: https://doi.org/10.3390/s21030995

Huang F, Zhang Y, Lin J, Liu Y. Biosensors Coupled with Signal Amplification Technology for the Detection of Pathogenic Bacteria: A Review. Biosensors. 2021;11(6):190. doi:10.3390/bios11060190 DOI: https://doi.org/10.3390/bios11060190

Castillo-Henríquez L, Brenes-Acuña M, Castro-Rojas A, Corde-ro-Salmerón R, Lopretti-Correa M, Vega-Baudrit JR. Bio-sensors for the Detection of Bacterial and Viral Clinical Pathogens. Sensors (Basel). 2020;20(23):6926. doi:10.3390/s20236926 DOI: https://doi.org/10.3390/s20236926

Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Bio-sensors for Detection of Pathogenic Food Bacteria: A Re-view. Biosensors. 2020;10(6):58. doi:10.3390/bios10060058 DOI: https://doi.org/10.3390/bios10060058

Chamorro-Garcia A, Merkoçi A. Nanobiosensors in diagnostics. Nanobiomedicine. 2016;3:1849543516663574. doi:10.1177/1849543516663574 DOI: https://doi.org/10.1177/1849543516663574

Naresh Varnakavi, Lee N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosen-sors. Sensors (Basel). 2021;21(4):1109. doi:10.3390/s21041109 DOI: https://doi.org/10.3390/s21041109

Sharma A, Badea M, Tiwari S, Marty JL. Wearable Biosensors: An Alternative and Practical Approach in Healthcare and Disease Monitoring. Molecules. 2021;26(3):748. doi:10.3390/molecules26030748 DOI: https://doi.org/10.3390/molecules26030748

Kaya HO, Cetin AE, Azimzadeh M, Topkaya SN. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J Electroanal Chem. 2021;882:114989. doi:10.1016/j.jelechem.2021.114989 DOI: https://doi.org/10.1016/j.jelechem.2021.114989

Kulkarni MB, Ayachit NH, Aminabhavi TM. Recent Advance-ments in Nanobiosensors: Current Trends, Challenges, Ap-plications, and Future Scope. Biosensors. 2022;12(10):892. doi:10.3390/bios12100892 DOI: https://doi.org/10.3390/bios12100892

Fan YF, Guo ZB, Ge GB. Enzyme-Based Biosensors and Their Applications. Biosensors. 2023;13(4):476. doi:10.3390/bios13040476 DOI: https://doi.org/10.3390/bios13040476

Chen S, Chen X, Su H, Guo M, Liu H. Advances in Synthetic-Biology-Based Whole-Cell Biosensors: Principles, Genetic Modules, and Applications in Food Safety. Int J Mol Sci. 2023;24(9):7989. doi:10.3390/ijms24097989 DOI: https://doi.org/10.3390/ijms24097989

Vallejos-Vidal E, Reyes-Cerpa S, Rivas-Pardo JA, et al. Single-Nucleotide Polymorphisms (SNP) Mining and Their Effect on the Tridimensional Protein Structure Prediction in a Set of Immunity-Related Expressed Sequence Tags (EST) in Atlantic Salmon (Salmo salar). Front Genet. 2020;10. doi:10.3389/fgene.2019.01406 DOI: https://doi.org/10.3389/fgene.2019.01406

Kavita V. DNA Biosensors-A Review. J Bioengineer & Biomed-ical Sci. 2017;07(02). doi:10.4172/2155-9538.1000222. DOI: https://doi.org/10.4172/2155-9538.1000222

Carvajal Barbosa L, Insuasty Cepeda D, León Torres AF, Arias Cortes MM, Rivera Monroy ZJ, Garcia Castaneda JE. Nucle-ic acid-based biosensors: analytical devices for prevention, diagnosis and treatment of diseases. Vitae. 2021;28(3). doi:10.17533/udea.vitae.v28n3a347259. DOI: https://doi.org/10.17533/udea.vitae.v28n3a347259

Nanomaterials in Biosensors. In: Nanomaterials for Biosen-sors. Elsevier; 2018:1-74. doi:10.1016/b978-0-323-44923-6.00001-7 DOI: https://doi.org/10.1016/B978-0-323-44923-6.00001-7

Fu Z, Lu YC, Lai JJ. Recent Advances in Biosensors for Nucle-ic Acid and Exosome Detection. Chonnam Med J. 2019;55(2):86. doi:10.4068/cmj.2019.55.2.86 DOI: https://doi.org/10.4068/cmj.2019.55.2.86

Kim J, Noh S, Park JA, et al. Recent Advances in Aptasensor for Cytokine Detection: A Review. Sensors (Basel). 2021;21(24):8491. doi:10.3390/s21248491 DOI: https://doi.org/10.3390/s21248491

Chen Z, Hu L, Zhang BT, et al. Artificial Intelligence in Ap-tamer–Target Binding Prediction. Int J Mol Sci. 2021;22(7):3605. doi:10.3390/ijms22073605 DOI: https://doi.org/10.3390/ijms22073605

Sequeira-Antunes B, Ferreira HA. Nucleic Acid Aptamer-Based Biosensors: A Review. Biomedicines. 2023;11(12):3201. doi:10.3390/biomedicines11123201 DOI: https://doi.org/10.3390/biomedicines11123201

Xue Z, Gai Y, Wu Y, Liu Z, Li Z. Wearable mechanical and electrochemical sensors for real-time health monitoring. Commun Mater. 2024;5(1):211. doi:10.1038/s43246-024-00658-2 DOI: https://doi.org/10.1038/s43246-024-00658-2

Papani R, Li Y, Wang S. Soft mechanical sensors for wearable and implantable applications. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024;16(3):e1961. doi:10.1002/wnan.1961 DOI: https://doi.org/10.1002/wnan.1961

Arlett JL, Myers EB, Roukes ML. Comparative advantages of mechanical biosensors. Nat Nanotechnol. 2011;6(4):203-215. doi:10.1038/nnano.2011.44 DOI: https://doi.org/10.1038/nnano.2011.44

Jarockyte G, Karabanovas V, Rotomskis R, Mobasheri A. Mul-tiplexed Nanobiosensors: Current Trends in Early Diagnos-tics. Sensors (Basel). 2020;20(23):6890. doi:10.3390/s20236890 DOI: https://doi.org/10.3390/s20236890

Mokhtarzadeh A, Eivazzadeh-Keihan R, Pashazadeh P, et al. Nanomaterial-based biosensors for detection of pathogenic virus. Trends Analyt Chem. 2017;97:445-457. doi:10.1016/j.trac.2017.10.005 DOI: https://doi.org/10.1016/j.trac.2017.10.005

Song M, Yang M, Hao J. Pathogenic Virus Detection by Opti-cal Nanobiosensors. Cell Rep Phys Sci. 2021;2(1):100288. doi:10.1016/j.xcrp.2020.100288 DOI: https://doi.org/10.1016/j.xcrp.2020.100288

Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotech-nology-Enabled Biosensors: A Review of Fundamentals, De-sign Principles, Materials, and Applications. Biosensors (Ba-sel). 2022;13(1):40. doi:10.3390/bios13010040 DOI: https://doi.org/10.3390/bios13010040

Pourmadadi M, Yazdian F, Hojjati S, Khosravi-Darani K. De-tection of Microorganisms Using Graphene-Based Nanobi-osensors. Food Technol Biotechnol. 2021;59(4):496-506. doi:10.17113/ftb.59.04.21.7223 DOI: https://doi.org/10.17113/ftb.59.04.21.7223

Khan I, Saeed K, Khan I. Nanoparticles: Properties, applica-tions and toxicities. Arab J Chem. 2019;12(7):908-931. doi:10.1016/j.arabjc.2017.05.011 DOI: https://doi.org/10.1016/j.arabjc.2017.05.011

Altammar KA. A review on nanoparticles: characteristics, syn-thesis, applications, and challenges. Front Microbiol. 2023;14:1155622. doi:10.3389/fmicb.2023.1155622 DOI: https://doi.org/10.3389/fmicb.2023.1155622

Huang Y, Li P, Zhao R, et al. Silica nanoparticles: Biomedical applications and toxicity. Biomed Pharmacother. 2022;151:113053. doi:10.1016/j.biopha.2022.113053 DOI: https://doi.org/10.1016/j.biopha.2022.113053

Janjua TI, Cao Y, Kleitz F, Linden M, Yu C, Popat A. Silica nanoparticles: A review of their safety and current strate-gies to overcome biological barriers. Adv Drug Deliv Rev. 2023;203:115115. doi:10.1016/j.addr.2023.115115 DOI: https://doi.org/10.1016/j.addr.2023.115115

Janissen R, Sahoo PK, Santos CA, et al. InP Nanowire Biosen-sor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett. 2017;17(10):5938-5949. doi:10.1021/acs.nanolett.7b01803 DOI: https://doi.org/10.1021/acs.nanolett.7b01803

Chen S, Bashir R. Advances in field-effect biosensors towards point-of-use. Nanotechnology. 2023;34(49):492002. doi:10.1088/1361-6528/acf3f0 DOI: https://doi.org/10.1088/1361-6528/acf3f0

Syedmoradi L, Ahmadi A, Norton ML, Omidfar K. A review on nanomaterial-based field effect transistor technology for bi-omarker detection. Microchim Acta. 2019;186(11):739. doi:10.1007/s00604-019-3850-6 DOI: https://doi.org/10.1007/s00604-019-3850-6

Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosen-sors for healthcare monitoring. J Nanobiotechnol. 2023;21(1):411. doi:10.1186/s12951-023-02153-1 DOI: https://doi.org/10.1186/s12951-023-02153-1

Chen HC, Chen YT, Tsai RY, et al. A sensitive and selective magnetic graphene composite-modified polycrystalline-silicon nanowire field-effect transistor for bladder cancer diagnosis. Biosens Bioelectron. 2015;66:198-207. doi:10.1016/j.bios.2014.11.019 DOI: https://doi.org/10.1016/j.bios.2014.11.019

Li D, Chen H, Fan K, et al. A supersensitive silicon nanowire array biosensor for quantitating tumor marker ctDNA. Bio-sens Bioelectron. 2021;181:113147. doi:10.1016/j.bios.2021.113147 DOI: https://doi.org/10.1016/j.bios.2021.113147

Wei S, Dou Y, Yu Y, et al. A novel biosensor based on a bio-barcode for detecting Mycobacterium tuberculosis. Anal Methods. 2023;15(30):3683-3691. doi:10.1039/D3AY00772C DOI: https://doi.org/10.1039/D3AY00772C

Ma J, Du M, Wang C, et al. Rapid and Sensitive Detection of Mycobacterium tuberculosis by an Enhanced Nanobiosen-sor. ACS Sens. 2021;6(9):3367-3376. doi:10.1021/acssensors.1c01227 DOI: https://doi.org/10.1021/acssensors.1c01227

Krivitsky V, Zverzhinetsky M, Patolsky F. Antigen-Dissociation from Antibody-Modified Nanotransistor Sensor Arrays as a Direct Biomarker Detection Method in Unprocessed Bi-osamples. Nano Lett. 2016;16(10):6272-6281. doi:10.1021/acs.nanolett.6b02584 DOI: https://doi.org/10.1021/acs.nanolett.6b02584

Kim J, Jeong S, Sarawut S, et al. An immunosensor based on a high performance dual-gate oxide semiconductor thin-film transistor for rapid detection of SARS-CoV-2. Lab Chip. 2022;22(5):899-907. doi:10.1039/D1LC01116B DOI: https://doi.org/10.1039/D1LC01116B

Park S, Kim H, Woo K, et al. SARS-CoV-2 Variant Screening Using a Virus-Receptor-Based Electrical Biosensor. Nano Lett. 2022;22(1):50-57. doi:10.1021/acs.nanolett.1c03108 DOI: https://doi.org/10.1021/acs.nanolett.1c03108

Seo G, Lee G, Kim MJ, et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Bio-sensor. ACS Nano. 2020;14(4):5135-5142. doi:10.1021/acsnano.0c02823 DOI: https://doi.org/10.1021/acsnano.0c02823

Huang YW, Wu CS, Chuang CK, et al. Real-Time and Label-Free Detection of the Prostate-Specific Antigen in Human Serum by a Polycrystalline Silicon Nanowire Field-Effect Transistor Biosensor. Anal Chem. 2013;85(16):7912-7918. doi:10.1021/ac401610s DOI: https://doi.org/10.1021/ac401610s

Institute of Physics, P.O: Sainik School, Bhubaneswar, India, Sn S. Nanomaterials for Monitoring Glucose in Diabetes. Austin J Biosens & Bioelectron. 2023;8(1). doi:10.26420/austinjbiosensbioelectron.2023.1045 DOI: https://doi.org/10.26420/austinjbiosensbioelectron.2023.1045

Downloads

Published

08-11-2025

Issue

Section

Reviews