Artificial intelligence to support clinical judgement in nursing: a scoping review protocol
DOI:
https://doi.org/10.62741/ahrj.v2i4.73Keywords:
Nursing, Artificial intelligence, Judgement, Clinical Decision-makingAbstract
Introduction: As artificial intelligence becomes increasingly explored in healthcare, its potential to influence nurses’ cognitive processes—including assessment, reasoning, and decision-making—has garnered growing attention. Nevertheless, the extent to which these technologies effectively support clinical judgment in nursing remains insufficiently understood, particularly regarding epistemological alignment, practical implementation, and documented outcomes.
Objectives: To map and characterize the existing literature on how artificial intelligence technologies have been developed, implemented, or evaluated to support clinical judgment in nursing.
Methodology: This scoping review follows the JBI guidelines and addresses the question: How has artificial intelligence been used to support clinical judgment in nursing practice? The search will include multiple international databases and grey literature, with no language restrictions, and will cover studies published from January 2015 to June 2025. Article selection will be based on predefined inclusion and exclusion criteria aligned with the JBI methodology. Eligible studies will include those involving nurses or nursing students in which artificial intelligence supports cognitive, interpretative, or reasoning processes related to clinical judgment. The final review will be reported following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews guidelines.
Conclusion: The proposed scoping review will systematically map and synthesize evidence on how artificial intelligence supports clinical judgment in nursing. It will analyze the types of artificial intelligence technologies used, the cognitive processes targeted, and the contexts of application. By identifying key findings and gaps, this review aims to clarify the potential of artificial intelligence to enhance nurses’ reasoning and decision-making, informing future research and practice.References
Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7 DOI: https://doi.org/10.1038/s41591-018-0300-7
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Fu-ture Healthc J. 2021;8(2):e188-e194. doi:10.7861/fhj.2021-0095 DOI: https://doi.org/10.7861/fhj.2021-0095
Morley J, Machado CCV, Burr C, et al. The ethics of AI in health care: A mapping review. Soc Sci Med. 2020;260:113172. doi:10.1016/j.socscimed.2020.113172 DOI: https://doi.org/10.1016/j.socscimed.2020.113172
Tanner CA. Thinking like a nurse: a research-based model of clinical judgment in nursing. J Nurs Educ. 2006;45(6):204-211. doi:10.3928/01484834-20060601-04 DOI: https://doi.org/10.3928/01484834-20060601-04
Kavanagh JM, Sharpnack PA. Crisis in Competency: A De-fining Moment in Nursing Education. Online J Issues Nurs. 2021;26(1):undefined-undefined. doi:10.3912/OJIN.Vol26No01Man02 DOI: https://doi.org/10.3912/OJIN.Vol26No01Man02
Al-Moteri M, Plummer V, Cooper S, Symmons M. Clinical deterioration of ward patients in the presence of anteced-ents: A systematic review and narrative synthesis. Aust Crit Care Off J Confed Aust Crit Care Nurses. 2019;32(5):411-420. doi:10.1016/j.aucc.2018.06.004 DOI: https://doi.org/10.1016/j.aucc.2018.06.004
Jessee MA. An Update on Clinical Judgment in Nursing and Implications for Education, Practice, and Regulation. J Nurs Regul. 2021;12(3):50-60. doi:10.1016/S2155-8256(21)00116-2 DOI: https://doi.org/10.1016/S2155-8256(21)00116-2
Mushta J, L Rush K, Andersen E. Failure to rescue as a nurse-sensitive indicator. Nurs Forum (Auckl). 2018;53(1):84-92. doi:10.1111/nuf.12215 DOI: https://doi.org/10.1111/nuf.12215
Chaboyer W, Harbeck E, Lee BO, Grealish L. Missed nursing care: An overview of reviews. Kaohsiung J Med Sci. 2021;37(2):82-91. doi:10.1002/kjm2.12308 DOI: https://doi.org/10.1002/kjm2.12308
Thomas L, Donohue-Porter P, Stein Fishbein J. Impact of Interruptions, Distractions, and Cognitive Load on Proce-dure Failures and Medication Administration Errors. J Nurs Care Qual. 2017;32(4):309-317. doi:10.1097/NCQ.0000000000000256 DOI: https://doi.org/10.1097/NCQ.0000000000000256
Huber E, Kleinknecht-Dolf M, Kugler C, Spirig R. Patient-related complexity of nursing care in acute care hospitals - an updated concept. Scand J Caring Sci. 2021;35(1):178-195. doi:10.1111/scs.12833 DOI: https://doi.org/10.1111/scs.12833
Lane A, Landers M, Andrews T. Nebulous Intentioning - Acute hospital nurses’ struggle to deliver core nursing care. J Adv Nurs. 2020;76(12):3537-3547. doi:10.1111/jan.14546 DOI: https://doi.org/10.1111/jan.14546
Benner P. From Novice to Expert - Excellence and Power in Clinical Nursing Practice. AJN Am J Nurs. 1984;84(12). https://journals.lww.com/ajnonline/fulltext/1984/12000/from_novice_to_expert_excellence_and_power_in.25.aspx DOI: https://doi.org/10.1097/00000446-198412000-00027
Connor J, Flenady T, Massey D, Dwyer T. Clinical judge-ment in nursing – An evolutionary concept analysis. J Clin Nurs. 2023;32(13-14):3328-3340. doi:10.1111/jocn.16469 DOI: https://doi.org/10.1111/jocn.16469
Uppor W, Klunklin A, Viseskul N, Skulphan S. A concept analysis of clinical judgment in undergraduate nursing students. Nurs Forum (Auckl). 2022;57(5):932-937. doi:10.1111/nuf.12757 DOI: https://doi.org/10.1111/nuf.12757
Simmons B. Clinical reasoning: concept analysis. J Adv Nurs. 2010;66(5):1151-1158. DOI: https://doi.org/10.1111/j.1365-2648.2010.05262.x
Mohammadi‐Shahboulaghi F, Khankeh H, HosseinZadeh T. Clinical reasoning in nursing students: A concept analy-sis. Nurs Forum (Auckl). 2021;56(4):1008-1014. doi:10.1111/nuf.12628 DOI: https://doi.org/10.1111/nuf.12628
Nagels M. Le jugement clinique est un schème. Propositions conceptuelles et perspectives en formation: Rech Soins In-firm. 2017;N° 129(2):6-17. doi:10.3917/rsi.129.0006 DOI: https://doi.org/10.3917/rsi.129.0006
Yee A. Clinical decision-making in the intensive care unit: A concept analysis. Intensive Crit Care Nurs. 2023;77:103430. doi:10.1016/j.iccn.2023.103430 DOI: https://doi.org/10.1016/j.iccn.2023.103430
Robert RR, Tilley DS, Petersen S. A Power in Clinical Nurs-ing Practice: Concept Analisys on Nursing Intuiton. Clin Pract. 2014;23(5):343-349.
Kerns C, Wedgeworth M. Barriers and Facilitators Experi-enced by Undergraduate Nursing Faculty Teaching Clinical Judgment: A Qualitative Study. SAGE Open Nurs. 2024;10. doi:10.1177/23779608241274728 DOI: https://doi.org/10.1177/23779608241274728
Lasater K. Clinical judgment development: Using simula-tion to create an assessment rubric. J Nurs Educ. 2007;46(11):496-503. doi:10.3928/01484834-20071101-04 DOI: https://doi.org/10.3928/01484834-20071101-04
Bussard ME. Evaluation of Clinical Judgment in Prelicen-sure Nursing Students. Nurse Educ. 2018;43(2):106-108. doi:10.1097/NNE.0000000000000432 DOI: https://doi.org/10.1097/NNE.0000000000000432
Yuan HB. The objective structured clinical examination (OSCE) in high-fidelity simulations for assessing nursing students’ clinical judgment. In: ACM Int. Conf. Proc. Ser. Association for Computing Machinery; 2019:136-139. doi:10.1145/3345120.3345127 DOI: https://doi.org/10.1145/3345120.3345127
Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. JAMA. 2018;320(21):2199-2200. doi:10.1001/jama.2018.17163 DOI: https://doi.org/10.1001/jama.2018.17163
Topol EJ. Deep Medicine : How Artificial Intelligence Can Make Healthcare Human Again. First edition. Basic Books; 2019.
Hu M, Wang Y, Liu Y, et al. Artificial Intelligence in Nurs-ing Decision-Making: A Bibliometric Analysis of Trends and Impacts. Nurs Rep. 2025;15(6):198. doi:10.3390/nursrep15060198 DOI: https://doi.org/10.3390/nursrep15060198
Ruksakulpiwat S, Thorngthip S, Niyomyart A, et al. A Sys-tematic Review of the Application of Artificial Intelligence in Nursing Care: Where are We, and What’s Next? J Multi-discip Healthc. 2024;Volume 17:1603-1616. doi:10.2147/JMDH.S459946 DOI: https://doi.org/10.2147/JMDH.S459946
Ventura-Silva J, Martins MM, Trindade L de L, et al. Artifi-cial Intelligence in the Organization of Nursing Care: A Scoping Review. Nurs Rep. 2024;14(4):2733-2745. doi:10.3390/nursrep14040202 DOI: https://doi.org/10.3390/nursrep14040202
Manetti W. Sound clinical judgment in nursing: A concept analysis. Nurs Forum (Auckl). 2019;54(1):102-110. doi:10.1111/nuf.12303 DOI: https://doi.org/10.1111/nuf.12303
Chin-Yee B, Upshur R. The Impact of Artificial Intelligence on Clinical Judgment: A Briefing Document. Tor AMS Healthc. Published online 2019.
Dos Santos ML, Victória VNG. Critical evaluation of applica-tions of artificial intelligence based linguistic models in Oc-cupational Health. Rev Bras Med Trab Publicacao Of As-soc Nac Med Trab-ANAMT. 2024;22(1):e20231241. doi:10.47626/1679-4435-2023-1241 DOI: https://doi.org/10.47626/1679-4435-2023-1241
Rodrigues D, Cruz-Correia R. Large Language Models in Nursing Education: State-of-the-Art. Stud Health Technol Inform. 2024;316:1024-1028. doi:10.3233/SHTI240584 DOI: https://doi.org/10.3233/SHTI240584
Comeau DS, Bitterman DS, Celi LA. Preventing unrestricted and unmonitored AI experimentation in healthcare through transparency and accountability. Npj Digit Med. 2025;8(1):1-7. doi:10.1038/s41746-025-01443-2 DOI: https://doi.org/10.1038/s41746-025-01443-2
Seo J, Choi D, Kim T, et al. Evaluation Framework of Large Language Models in Medical Documentation: Develop-ment and Usability Study. J Med Internet Res. 2024;26(1):e58329. doi:10.2196/58329 DOI: https://doi.org/10.2196/58329
Blease C, Kaptchuk TJ, Bernstein MH, Mandl KD, Halamka JD, DesRoches CM. Artificial Intelligence and the Future of Primary Care: Exploratory Qualitative Study of UK General Practitioners’ Views. J Med Internet Res. 2019;21(3):e12802. doi:10.2196/12802 DOI: https://doi.org/10.2196/12802
Thirsk LM, Panchuk JT, Stahlke S, Hagtvedt R. Cognitive and implicit biases in nurses’ judgment and decision-making: A scoping review. Int J Nurs Stud. 2022;133. doi:10.1016/j.ijnurstu.2022.104284 DOI: https://doi.org/10.1016/j.ijnurstu.2022.104284
Labrague LJ, AL Sabei S, AL Yahyaei A. Artificial intelli-gence in nursing education: A review of AI-based teaching pedagogies. Teach Learn Nurs. 2025;20(3):210-221. doi:10.1016/j.teln.2025.01.019 DOI: https://doi.org/10.1016/j.teln.2025.01.019
Labrague LJ, Sabei SA. Integration of AI-Powered Chatbots in Nursing Education: A Scoping Review of Their Utiliza-tion, Outcomes, and Challenges. Teach Learn Nurs. 2025;20(1):e285-e293. doi:10.1016/j.teln.2024.11.010 DOI: https://doi.org/10.1016/j.teln.2024.11.010
Ramírez-Baraldes E, García-Gutiérrez D, García-Salido C. Artificial Intelligence in Nursing: New Opportunities and Challenges. Eur J Educ. 2025;60(1):e70033. doi:10.1111/ejed.70033 DOI: https://doi.org/10.1111/ejed.70033
American Nurses Association. The Ethical Use of Artificial Intelligence in Nursing Practice: Position Statement. ANA Center for Ethics and Human Rights; 2022. Accessed June 20, 2025. https://www.nursingworld.org/globalassets/practiceandpolicy/nursing-excellence/ana-position-statements/the-ethical-use-of-artificial-intelligence-in-nursing-practice_bod-approved-12_20_22.pdf
Alves J, Azevedo R, Marques A, Encarnação R, Alves P. Pressure Injury Prediction in Intensive Care Units Using Ar-tificial Intelligence: A Scoping Review. Nurs Rep. 2025;15(4):126. doi:10.3390/nursrep15040126 DOI: https://doi.org/10.3390/nursrep15040126
Fernandes F, Santos P, Sá L, Neves J. Contributions of Arti-ficial Intelligence to Decision Making in Nursing: A Scoping Review Protocol. Nurs Rep. 2023;13(1):67-72. doi:10.3390/nursrep13010007 DOI: https://doi.org/10.3390/nursrep13010007
Arksey H, O’Malley L. Scoping studies: towards a methodo-logical framework. Int J Soc Res Methodol. 2005;8(1):19-32. doi:10.1080/1364557032000119616 DOI: https://doi.org/10.1080/1364557032000119616
Levac D, Colquhoun H, O’Brien KK. Scoping studies: ad-vancing the methodology. Implement Sci. 2010;5(1):69. doi:10.1186/1748-5908-5-69 DOI: https://doi.org/10.1186/1748-5908-5-69
Peters M, Marnie C, Tricco AC, et al. Updated methodologi-cal guidance for the conduct of scoping reviews. JBI Evid Synth. 2020;18(10):2119-2126. doi:10.11124/JBIES-20-00167 DOI: https://doi.org/10.11124/JBIES-20-00167
Peters MDJ, Godfrey C, McInerney P, et al. Best practice guidance and reporting items for the development of scop-ing review protocols. JBI Evid Synth. 2022;20(4):953. doi:10.11124/JBIES-21-00242 DOI: https://doi.org/10.11124/JBIES-21-00242
Peters MD, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Scoping reviews. In: Aromataris E, Lockwood C, Porritt K, Pilla B, Jordan Z, eds. JBI Manual for Evidence Synthesis. JBI; 2024. doi:10.46658/JBIMES-24-09 DOI: https://doi.org/10.46658/JBIMES-24-09
Pollock D, Peters MDJ, Khalil H, et al. Recommendations for the extraction, analysis, and presentation of results in scoping reviews. JBI Evid Synth. 2023;21(3):520. doi:10.11124/JBIES-22-00123 DOI: https://doi.org/10.11124/JBIES-22-00123
McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strat-egies: 2015 Guideline Statement. J Clin Epidemiol. 2016;75:40-46. doi:10.1016/j.jclinepi.2016.01.021 DOI: https://doi.org/10.1016/j.jclinepi.2016.01.021
Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5(1). doi:10.1186/s13643-016-0384-4 DOI: https://doi.org/10.1186/s13643-016-0384-4
Takats S, Stillman D, Cheslack-Postava F, et al. Zotero, ver-sion 7.0.18; Corporation for Digital Scholarship; Vienna, VA USA, URL: https://www.zotero.org/. https://www.zotero.org/
Tricco AC, Lillie E, Zarin W, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explana-tion. Ann Intern Med. 2018;169(7):467-473. doi:10.7326/M18-0850 DOI: https://doi.org/10.7326/M18-0850
Page MJ, Mckenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting sys-tematic reviews. BMJ. 2021;372(n71):1-9. doi:10.1136/bmj.n71 DOI: https://doi.org/10.1136/bmj.n71
Walker LO, Avant KC. Strategies for Theory Construction in Nursing. Sixth edition. Pearson; 2019.
Downloads
Published
Issue
Section
License
After the final approval, authors must send the copyright transfer agreement signed by the first author representing each additional author. This agreement must state any conflicts of interest.
Athena - Health & Research Journal https://localhost/athena is licensed under a License Creative Commons - Attribution-NonCommercial 4.0 International.